fork download
  1. import numpy as np
  2. from itertools import product # To generate all binary combinations
  3.  
  4. # Initialisierung der Schwellenwerte
  5. lower_threshold = 0.8
  6. upper_threshold = 1.2
  7.  
  8. # Lernrate
  9. learning_rate = 0.1
  10.  
  11. # Trainingsdaten (Inputs für das XOR-Problem und andere)
  12. inputs = [[0, 0], [0, 1], [1, 0], [1, 1]]
  13.  
  14. # Alle möglichen Zieltabellen (16 Kombinationen)
  15. all_possible_targets = list(product([0, 1], repeat=4))
  16.  
  17. # Trainingsloop für jede mögliche Zieltabelle
  18. for table_index, targets in enumerate(all_possible_targets, start=1):
  19. print(f"\n=== Wahrheitstabelle {table_index}: Targets = {targets} ===")
  20.  
  21. # Trainingsloop mit max. 1000 Iterationen
  22. max_iterations = 1000
  23. epoch = 0
  24. network_trained = False
  25. start_weights = None
  26. final_weights = None
  27. all_epoch_outputs = [] # Store outputs of all epochs for debugging and transparency
  28.  
  29. while epoch < max_iterations:
  30. epoch += 1
  31. all_correct = True # Flag, um zu überprüfen, ob alle Ausgaben korrekt sind
  32. current_weights = np.random.rand(2) # Zufällige Startgewichte
  33.  
  34. if epoch == 1: # Die erste Iteration nach Initialisierung
  35. start_weights = current_weights # Speichere die Startgewichte
  36.  
  37. epoch_outputs = [] # To store outputs of this epoch
  38.  
  39. for input_vector, target in zip(inputs, targets):
  40. # Berechnung der gewichteten Summe
  41. weighted_sum = np.dot(input_vector, current_weights)
  42.  
  43. # Aktivierungsfunktion (einfache Schwellenwertfunktion)
  44. output = 1 if lower_threshold < weighted_sum < upper_threshold else 0
  45.  
  46. # Fehlerberechnung
  47. error = target - output
  48.  
  49. # Wenn ein Fehler vorliegt, dann weise die Gewichte an
  50. if error != 0:
  51. all_correct = False
  52. current_weights += learning_rate * error * np.array(input_vector)
  53.  
  54. epoch_outputs.append((input_vector, output, target)) # Save each iteration's output
  55.  
  56. all_epoch_outputs.append(epoch_outputs)
  57.  
  58. # Überprüfe, ob alle Ausgaben korrekt sind
  59. if all_correct:
  60. network_trained = True
  61. final_weights = current_weights # Speichere die finalen Gewichte
  62. break # Stoppe, wenn alle Ausgaben korrekt sind
  63.  
  64. # Wenn Tabelle nach 100 Iterationen nicht gelernt wurde, setze neue zufällige Startgewichte
  65. if epoch % 100 == 0:
  66. print(f"Nicht funktionierende Startgewichte: {start_weights}")
  67. start_weights = np.random.rand(2) # Setze neue Startgewichte
  68.  
  69. if network_trained:
  70. print(f"Das Netzwerk hat Wahrheitstabelle {table_index} korrekt nach {epoch} Iterationen gelernt.")
  71. print(f"Die Working Startgewichte waren: {start_weights}")
  72. print(f"Die finalen Gewichte sind: {final_weights}")
  73. else:
  74. print(f"Das Netzwerk hat Wahrheitstabelle {table_index} nach {epoch} Iterationen nicht korrekt gelernt.")
  75. print("\nFinal Test Output übersprungen, da das Netzwerk nicht gelernt hat.")
  76. continue # Skip final testing if the network didn't learn the truth table
  77.  
  78. # Testen des Netzwerks nach den Lern-Iterationen
  79. print("\nFinal Test Output:")
  80. for input_vector, target in zip(inputs, targets):
  81. weighted_sum = np.dot(input_vector, final_weights)
  82. output = 1 if lower_threshold < weighted_sum < upper_threshold else 0
  83. print(f"Input: {input_vector}, Target: {target}, Output: {output}")
  84.  
  85. # Optionally, print out the outputs of each epoch for transparency
  86. print("\nEpoch Outputs:")
  87. for epoch_index, epoch_outputs in enumerate(all_epoch_outputs):
  88. print(f"Epoch {epoch_index + 1}:")
  89. for input_vector, output, target in epoch_outputs:
  90. print(f" Input: {input_vector}, Output: {output}, Target: {target}")
  91.  
Success #stdin #stdout 0.61s 29284KB
stdin
Standard input is empty
stdout
=== Wahrheitstabelle 1: Targets = (0, 0, 0, 0) ===
Das Netzwerk hat Wahrheitstabelle 1 korrekt nach 1 Iterationen gelernt.
Die Working Startgewichte waren: [0.27560521 0.48518597]
Die finalen Gewichte sind: [0.27560521 0.48518597]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 0, Output: 0
Input: [1, 0], Target: 0, Output: 0
Input: [1, 1], Target: 0, Output: 0

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0

=== Wahrheitstabelle 2: Targets = (0, 0, 0, 1) ===
Das Netzwerk hat Wahrheitstabelle 2 korrekt nach 1 Iterationen gelernt.
Die Working Startgewichte waren: [0.14975256 0.77537345]
Die finalen Gewichte sind: [0.14975256 0.77537345]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 0, Output: 0
Input: [1, 0], Target: 0, Output: 0
Input: [1, 1], Target: 1, Output: 1

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 1

=== Wahrheitstabelle 3: Targets = (0, 0, 1, 0) ===
Das Netzwerk hat Wahrheitstabelle 3 korrekt nach 13 Iterationen gelernt.
Die Working Startgewichte waren: [0.99990473 0.78237238]
Die finalen Gewichte sind: [0.89037912 0.43330585]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 0, Output: 0
Input: [1, 0], Target: 1, Output: 1
Input: [1, 1], Target: 0, Output: 0

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 3:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 4:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 5:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 6:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 7:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 8:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 9:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 10:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 11:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 12:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 13:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0

=== Wahrheitstabelle 4: Targets = (0, 0, 1, 1) ===
Das Netzwerk hat Wahrheitstabelle 4 korrekt nach 32 Iterationen gelernt.
Die Working Startgewichte waren: [0.92475974 0.96725033]
Die finalen Gewichte sind: [0.82277025 0.32009873]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 0, Output: 0
Input: [1, 0], Target: 1, Output: 1
Input: [1, 1], Target: 1, Output: 1

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 3:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 4:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 5:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 6:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 7:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 8:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 9:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 10:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 11:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 12:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 13:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 14:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 15:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 16:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 17:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 18:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 19:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 20:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 21:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 22:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 23:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 24:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 25:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 26:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 27:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 28:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 29:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 30:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 31:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 32:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 1, Target: 1

=== Wahrheitstabelle 5: Targets = (0, 1, 0, 0) ===
Das Netzwerk hat Wahrheitstabelle 5 korrekt nach 29 Iterationen gelernt.
Die Working Startgewichte waren: [0.57615174 0.29989326]
Die finalen Gewichte sind: [0.33326243 0.89757593]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 1, Output: 1
Input: [1, 0], Target: 0, Output: 0
Input: [1, 1], Target: 0, Output: 0

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 3:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 4:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 5:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 6:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 7:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 8:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 9:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 10:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 11:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 12:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 13:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 14:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 15:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 16:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 17:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 18:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 19:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 20:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 21:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 22:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 23:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 24:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 25:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 26:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 27:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 1, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 28:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 29:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0

=== Wahrheitstabelle 6: Targets = (0, 1, 0, 1) ===
Das Netzwerk hat Wahrheitstabelle 6 korrekt nach 10 Iterationen gelernt.
Die Working Startgewichte waren: [0.81529481 0.37887944]
Die finalen Gewichte sind: [0.11630833 0.89598329]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 1, Output: 1
Input: [1, 0], Target: 0, Output: 0
Input: [1, 1], Target: 1, Output: 1

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 0
  Input: [1, 1], Output: 1, Target: 1
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 1
Epoch 3:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 1
Epoch 4:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 1
Epoch 5:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 1, Target: 0
  Input: [1, 1], Output: 0, Target: 1
Epoch 6:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 0
  Input: [1, 1], Output: 0, Target: 1
Epoch 7:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 1
Epoch 8:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 1
Epoch 9:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 0
  Input: [1, 1], Output: 1, Target: 1
Epoch 10:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 1

=== Wahrheitstabelle 7: Targets = (0, 1, 1, 0) ===
Das Netzwerk hat Wahrheitstabelle 7 korrekt nach 34 Iterationen gelernt.
Die Working Startgewichte waren: [0.48112052 0.10406816]
Die finalen Gewichte sind: [0.84601731 0.85036423]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 1, Output: 1
Input: [1, 0], Target: 1, Output: 1
Input: [1, 1], Target: 0, Output: 0

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 3:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 4:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 5:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 6:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 7:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 8:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 9:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 10:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 11:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 12:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 13:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 14:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 15:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 16:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 17:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 18:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 19:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 20:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 21:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 22:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 23:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 24:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 25:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 26:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 27:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 28:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 29:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 30:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 31:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 32:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 33:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 34:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0

=== Wahrheitstabelle 8: Targets = (0, 1, 1, 1) ===
Nicht funktionierende Startgewichte: [0.59786709 0.82459808]
Nicht funktionierende Startgewichte: [0.53990924 0.28752339]
Nicht funktionierende Startgewichte: [0.15313962 0.57506262]
Nicht funktionierende Startgewichte: [0.45734939 0.35959358]
Nicht funktionierende Startgewichte: [0.28701897 0.3502723 ]
Nicht funktionierende Startgewichte: [0.93207505 0.99068651]
Nicht funktionierende Startgewichte: [0.47152289 0.95920933]
Nicht funktionierende Startgewichte: [0.5208777  0.73864294]
Nicht funktionierende Startgewichte: [0.6041065  0.43590534]
Nicht funktionierende Startgewichte: [0.46085011 0.47658661]
Das Netzwerk hat Wahrheitstabelle 8 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 9: Targets = (1, 0, 0, 0) ===
Nicht funktionierende Startgewichte: [0.72815316 0.74197165]
Nicht funktionierende Startgewichte: [0.26281778 0.97374785]
Nicht funktionierende Startgewichte: [0.74367803 0.46831262]
Nicht funktionierende Startgewichte: [0.81579514 0.78419425]
Nicht funktionierende Startgewichte: [0.43995578 0.07823524]
Nicht funktionierende Startgewichte: [0.00416094 0.35990538]
Nicht funktionierende Startgewichte: [0.89877818 0.84706345]
Nicht funktionierende Startgewichte: [0.27130361 0.21697214]
Nicht funktionierende Startgewichte: [0.04084064 0.56655295]
Nicht funktionierende Startgewichte: [0.83253322 0.76223585]
Das Netzwerk hat Wahrheitstabelle 9 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 10: Targets = (1, 0, 0, 1) ===
Nicht funktionierende Startgewichte: [0.8324418  0.06956773]
Nicht funktionierende Startgewichte: [0.12219807 0.7504043 ]
Nicht funktionierende Startgewichte: [0.93286567 0.22479919]
Nicht funktionierende Startgewichte: [0.29599384 0.36756975]
Nicht funktionierende Startgewichte: [0.55676558 0.31359192]
Nicht funktionierende Startgewichte: [0.04642017 0.50014003]
Nicht funktionierende Startgewichte: [0.47449048 0.21794357]
Nicht funktionierende Startgewichte: [0.44166049 0.06366306]
Nicht funktionierende Startgewichte: [0.94861376 0.8557872 ]
Nicht funktionierende Startgewichte: [0.38132184 0.27584297]
Das Netzwerk hat Wahrheitstabelle 10 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 11: Targets = (1, 0, 1, 0) ===
Nicht funktionierende Startgewichte: [0.10512327 0.64254212]
Nicht funktionierende Startgewichte: [0.32844586 0.8162905 ]
Nicht funktionierende Startgewichte: [0.5603887  0.37412432]
Nicht funktionierende Startgewichte: [0.24341239 0.59330762]
Nicht funktionierende Startgewichte: [0.90137299 0.40086809]
Nicht funktionierende Startgewichte: [0.36206727 0.44885792]
Nicht funktionierende Startgewichte: [0.81041525 0.31122392]
Nicht funktionierende Startgewichte: [0.05052073 0.68770916]
Nicht funktionierende Startgewichte: [0.09847462 0.02548184]
Nicht funktionierende Startgewichte: [0.22827993 0.80242567]
Das Netzwerk hat Wahrheitstabelle 11 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 12: Targets = (1, 0, 1, 1) ===
Nicht funktionierende Startgewichte: [0.94675632 0.75436409]
Nicht funktionierende Startgewichte: [0.06340645 0.77332827]
Nicht funktionierende Startgewichte: [0.36060113 0.95172737]
Nicht funktionierende Startgewichte: [0.22197893 0.13641985]
Nicht funktionierende Startgewichte: [0.02292379 0.03206606]
Nicht funktionierende Startgewichte: [0.97846149 0.04138597]
Nicht funktionierende Startgewichte: [0.95838918 0.06243819]
Nicht funktionierende Startgewichte: [0.93761903 0.08622771]
Nicht funktionierende Startgewichte: [0.2831846  0.37331373]
Nicht funktionierende Startgewichte: [0.90234468 0.10650798]
Das Netzwerk hat Wahrheitstabelle 12 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 13: Targets = (1, 1, 0, 0) ===
Nicht funktionierende Startgewichte: [0.17845056 0.51135893]
Nicht funktionierende Startgewichte: [0.2508043  0.35203487]
Nicht funktionierende Startgewichte: [0.80584374 0.4694965 ]
Nicht funktionierende Startgewichte: [0.56035319 0.96968795]
Nicht funktionierende Startgewichte: [0.72623499 0.48619286]
Nicht funktionierende Startgewichte: [0.26240053 0.79915864]
Nicht funktionierende Startgewichte: [0.38056037 0.13647502]
Nicht funktionierende Startgewichte: [0.4128656  0.29408861]
Nicht funktionierende Startgewichte: [0.08094948 0.77372224]
Nicht funktionierende Startgewichte: [0.95138618 0.09839061]
Das Netzwerk hat Wahrheitstabelle 13 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 14: Targets = (1, 1, 0, 1) ===
Nicht funktionierende Startgewichte: [0.60731181 0.33571078]
Nicht funktionierende Startgewichte: [0.40266495 0.0158118 ]
Nicht funktionierende Startgewichte: [0.50748461 0.48404488]
Nicht funktionierende Startgewichte: [0.40088822 0.35620761]
Nicht funktionierende Startgewichte: [0.54103039 0.06955944]
Nicht funktionierende Startgewichte: [0.33481723 0.65594883]
Nicht funktionierende Startgewichte: [0.35299045 0.78793517]
Nicht funktionierende Startgewichte: [0.46916758 0.88830333]
Nicht funktionierende Startgewichte: [0.29378387 0.87407473]
Nicht funktionierende Startgewichte: [0.67763304 0.91587574]
Das Netzwerk hat Wahrheitstabelle 14 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 15: Targets = (1, 1, 1, 0) ===
Nicht funktionierende Startgewichte: [0.60307901 0.2778987 ]
Nicht funktionierende Startgewichte: [0.80553075 0.20209546]
Nicht funktionierende Startgewichte: [0.23639171 0.08031393]
Nicht funktionierende Startgewichte: [0.75234097 0.97376945]
Nicht funktionierende Startgewichte: [0.19777706 0.46392688]
Nicht funktionierende Startgewichte: [0.75169311 0.29907159]
Nicht funktionierende Startgewichte: [0.4769102  0.05409893]
Nicht funktionierende Startgewichte: [0.51358383 0.45708595]
Nicht funktionierende Startgewichte: [0.41205259 0.78579511]
Nicht funktionierende Startgewichte: [0.40944014 0.19998772]
Das Netzwerk hat Wahrheitstabelle 15 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 16: Targets = (1, 1, 1, 1) ===
Nicht funktionierende Startgewichte: [0.38830972 0.3381108 ]
Nicht funktionierende Startgewichte: [0.25782958 0.48295686]
Nicht funktionierende Startgewichte: [0.49515593 0.56842792]
Nicht funktionierende Startgewichte: [0.64128289 0.92796975]
Nicht funktionierende Startgewichte: [0.67610161 0.09512917]
Nicht funktionierende Startgewichte: [0.14596646 0.4209368 ]
Nicht funktionierende Startgewichte: [0.90397172 0.87230405]
Nicht funktionierende Startgewichte: [0.59444687 0.79434336]
Nicht funktionierende Startgewichte: [0.71241537 0.86396483]
Nicht funktionierende Startgewichte: [0.48235416 0.27378355]
Das Netzwerk hat Wahrheitstabelle 16 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.