fork download
  1. PROGRAM cluster
  2. !--------------------------------------------------------!
  3. ! Example Molecular Dynamics Program ver.2.2 !
  4. ! !
  5. ! [プログラム概要] !
  6. ! ・ヴェルレ法による時間発展(数値積分) !
  7. ! ・N粒子孤立系に対するNVEアンサンブル !
  8. ! ・Lennard-Jones (12-6) ポテンシャル !
  9. ! !
  10. ! [改訂履歴] !
  11. ! 2002.10.05 ver 1.0 岡田 勇 !
  12. ! 2011.06.08 ver 2.0 北 幸海 (Fortran 90化) !
  13. ! 2020.12.14 ver 2.1 北 幸海 (単純化) !
  14. ! 2020.12.15 ver 2.2 北 幸海 (ウェブ実習用に標準出力化) !
  15. !--------------------------------------------------------!
  16. IMPLICIT NONE
  17.  
  18. !----- 固定変数 (変更しないこと) -----
  19. INTEGER, PARAMETER :: &
  20. NpTot = 2 ! 粒子数
  21. REAL(8), PARAMETER :: &
  22. Eps = 1.d0, & ! L-Jポテンシャルのパラメータ1
  23. Sigma = 1.d0, & ! L-Jポテンシャルのパラメータ2
  24. Mass = 1.d0 ! 粒子の質量
  25.  
  26.  
  27. !----- ユーザー変数 (課題に応じて変更する変数) -----
  28. ! Dt: 時間ステップ
  29. ! MDStep: ステップ数(繰り返しの回数)
  30. ! --> Dt = 1.d-2〜1.d-3が適当. Dt*MDStep= 1〜3 とする.
  31. ! --> サーバーに負荷をかけないよう Dt ≧ 1.d-5 とする
  32. INTEGER, PARAMETER :: MDStep = 1000 ! 総ステップ数
  33. REAL(8), PARAMETER :: Dt = 1.d-3 ! 時間ステップ
  34. REAL(8), PARAMETER :: R2_ini = 1.0d0 ! 粒子2の初期位置
  35. REAL(8), PARAMETER :: V2_ini = -1.0d0 ! 粒子2の初速
  36. INTEGER, PARAMETER :: NOut = 100 ! 出力データ数(MDStep以下で100を超えない整数)
  37.  
  38.  
  39. !----- 以下の変数・配列はプログラム内で自動更新 -----
  40. INTEGER i
  41. INTEGER :: NSum = 0, & ! 蓄積の回数
  42. n = 0, & ! 現在のステップ数
  43. PrintInt = 1 ! 出力間隔
  44. REAL(8) :: &
  45. R0(3, NpTot) = 0.d0, & ! 初期位置
  46. V(3, NpTot) = 0.d0, & ! 速度
  47. R(3, NpTot) = 0.d0, & ! 位置
  48. dR(3, NpTot) = 0.d0, & ! 初期位置からの変位
  49. dR_prev(3, NpTot) = 0.d0, & ! 時刻t(n-1)とt(n)間の変位
  50. dR_next(3, NpTot) = 0.d0, & ! 時刻t(n)とt(n+1)間の変位
  51. F(3, NpTot) = 0.d0, & ! 力
  52. T = 0.d0, & ! 運動エネルギー
  53. P = 0.d0, & ! ポテンシャルエネルギー
  54. H = 0.d0, & ! 全エネルギー(ハミルトニアン)
  55. H0 = 0.d0, & ! 計算開始時の全エネルギー
  56. V0 = 0.d0, & ! 計算開始時の平均速度
  57. MaxErrH = 0.d0, & ! ハミルトニアンの最大誤差
  58. SumH = 0.d0, & ! 蓄積されたハミルトニアン
  59. SumH2 = 0.d0, & ! 蓄積されたハミルトニアンの二乗
  60. SumT = 0.d0, & ! 蓄積された運動エネルギー
  61. SumT2 = 0.d0 ! 蓄積された運動エネルギーの二乗
  62.  
  63.  
  64. !----- Safety net -----
  65. if (Dt*MDStep > 3.d0) then
  66. write(6,*) 'Too long simulation time !!'
  67. stop
  68. endif
  69.  
  70.  
  71. !----- 各種設定値の出力 -----
  72. PrintInt = MDStep/NOut
  73. write(6,*) '=============================='
  74. write(6,*) 'MD simulation by Verlet method'
  75. write(6,*) '=============================='
  76. write(6,*) ' # of particles = ', NpTot
  77. write(6,*) ' L-J parameters:'
  78. write(6,*) ' --> Epsilon = ', Eps
  79. write(6,*) ' --> Sigma = ', Sigma
  80. write(6,*) ' Mass of particle = ', Mass
  81. write(6,*) ' Time step = ', Dt
  82. write(6,*) ' # of MD steps = ', MDStep
  83. write(6,*) ' Simulation time = ', Dt*real(MDStep,8)
  84. write(6,*) ' Print interval = ', Dt*real(PrintInt,8)
  85. write(6,*)
  86.  
  87.  
  88. !----- 粒子の初期情報の設定 -----
  89. ! 初期位置
  90. R0(1,2) = R2_ini ! 粒子1
  91. R0(1,1) = -R0(1,2) ! 粒子2
  92.  
  93. ! 初速
  94. V(1,2) = V2_ini ! 粒子1
  95. V(1,1) = -V(1,2) ! 粒子2
  96.  
  97. ! 初速度の大きさの平均値
  98. V0= 0.d0
  99. do i=1, NpTot
  100. V0= V0 + V(1,i)**2 + V(2,i)**2 + V(3,i)**2
  101. enddo ! i
  102. V0= sqrt(V0/real(NpTot,8))
  103.  
  104.  
  105. !----- 0ステップ目での力の計算 -----
  106. call ForcePotential (NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  107.  
  108.  
  109. !----- 1ステップ目の座標を計算 -----
  110. call Verlet (NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  111. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  112.  
  113.  
  114. !----- ハミルトニアンの初期値を保存 -----
  115. H0 = H
  116.  
  117.  
  118. !----- 出力 -----
  119. ! ヘッダー情報の出力
  120. write(6,*) '#time, position, velocity, kinetic, potential, hamiltonian'
  121.  
  122. ! 位置、速度などの出力.
  123. call Output (0, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  124. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  125.  
  126.  
  127. !----- 2ステップ目以降の時間発展 -----
  128. do n= 1, MDStep
  129.  
  130. ! nステップ目での力の計算
  131. call ForcePotential (NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  132.  
  133. ! (n+1)ステップ目の座標を計算
  134. call Verlet (NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  135. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  136.  
  137. ! 出力
  138. call Output (0, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  139. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  140.  
  141. enddo ! n
  142.  
  143.  
  144. !----- 各種平均値を出力 -----
  145. call Output (1, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  146. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  147.  
  148. write(6,*) ' Done.'
  149. write(6,*)
  150.  
  151. !----- 主プログラムの終了 -----
  152. END PROGRAM cluster
  153.  
  154.  
  155.  
  156. SUBROUTINE ForcePotential(NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  157. !----------------------------------!
  158. ! ポテンシャルエネルギーと力の計算 !
  159. !----------------------------------!
  160. IMPLICIT NONE
  161. INTEGER, INTENT(in) :: NpTot, n, MDStep
  162. REAL(8), INTENT(in) :: R0(3,NpTot), dR(3,NpTot), Eps, Sigma
  163. REAL(8), INTENT(inout) :: P, F(3,NpTot)
  164. ! Local stuff
  165. INTEGER i, j
  166. REAL(8) R1, R2, Rij(3), dpdr, drdv(3)
  167.  
  168. F(:,:)=0.d0 ; P=0.d0
  169.  
  170. do i= 1, NpTot
  171. do j= 1, NpTot
  172.  
  173. if (i /= j) then
  174.  
  175. ! dR: displacement from time 0 to time n
  176. Rij(:) = (dR(:,j) - dR(:,i)) + (R0(:,j) - R0(:,i))
  177. R2 = Rij(1)**2 + Rij(2)**2 + Rij(3)**2
  178. R1 = sqrt(R2)
  179.  
  180. ! potential energy
  181. P = P + 4.d0 * Eps * ((Sigma**2/R2)**6 - (Sigma**2/R2)**3)
  182.  
  183. ! force
  184. dpdr = 4.d0 * Eps * (-12.d0*(Sigma**2/R2)**6 + 6.d0*(Sigma**2/R2)**3) / R1
  185. drdv(:) = -Rij(:) / R1
  186. F(:,i) = F(:,i) - dpdr*drdv(:)
  187.  
  188. endif ! i /= j
  189.  
  190. enddo ! j
  191. enddo ! i
  192.  
  193. P = 0.5d0*P
  194.  
  195. return
  196. END SUBROUTINE ForcePotential
  197.  
  198.  
  199.  
  200. SUBROUTINE Verlet(NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  201. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  202. !--------------------------!
  203. ! Verlet法による座標の更新 !
  204. !--------------------------!
  205. IMPLICIT NONE
  206. INTEGER, INTENT(in) :: NpTot, n, MDStep
  207. INTEGER, INTENT(inout) :: NSum
  208. REAL(8), INTENT(in) :: R0(3,NpTot), P, Dt, Mass
  209. REAL(8), INTENT(inout) :: R(3,NpTot), F(3,NpTot), V(3,NpTot), dR(3,NpTot), &
  210. dR_prev(3,NpTot), dR_next(3,NpTot), H, T, SumH, &
  211. SumH2, SumT, SumT2
  212. ! Local stuff
  213. INTEGER i
  214.  
  215. !----- 0-th step -----
  216. if (n == 0) then
  217. ! current position
  218. R(:,:) = R0(:,:)
  219.  
  220. ! dR = dR_next = R(Δt) - R(0) = V(0)Δt + a(0)*(Δt)^2/2
  221. do i= 1, NpTot
  222. dR_next(:,i) = V(:,i)*Dt + 0.5d0*F(:,i)*Dt**2/Mass
  223. dR(:,i) = dR_next(:,i)
  224. enddo ! i
  225.  
  226.  
  227. !----- later steps -----
  228. elseif (n >= 1) then
  229. ! current position
  230. R(:,:) = R0(:,:) + dR(:,:)
  231.  
  232. ! dR_next = R(t+Δt) - R(t) = R(t) - R(t-Δt) + a(t)*(Δt)^2
  233. ! dR_prev = R(t) - R(t-Δt)
  234. ! dR = R(t+Δt) - R(0)
  235. do i= 1, NpTot
  236. dR_next(:,i) = dR_prev(:,i) + F(:,i)*Dt**2/Mass
  237. dR(:,i) = dR(:,i) + dR_next(:,i)
  238. V(:,i) = 0.5d0 * (dR_next(:,i) + dR_prev(:,i)) / Dt
  239. enddo
  240.  
  241. endif
  242.  
  243.  
  244. !----- Renaming for use at the next step -----
  245. dR_prev(:,:)= dR_next(:,:)
  246.  
  247.  
  248. !----- 運動エネルギーの計算 -----
  249. T = 0.d0
  250. do i= 1, NpTot
  251. T = T + 0.5d0 * Mass * (V(1,i)**2 + V(2,i)**2 + V(3,i)**2)
  252. enddo
  253.  
  254.  
  255. !----- ハミルトニアンの計算 -----
  256. H = T + P
  257.  
  258.  
  259. !----- 蓄積 -----
  260. NSum = NSum + 1 ! 蓄積の回数
  261. SumH = SumH + H ! ハミルトニアン
  262. SumH2 = SumH2 + H**2 ! ハミルトニアンの2乗
  263. SumT = SumT + T ! 運動エネルギー
  264. SumT2 = SumT2 + T**2 ! 運動エネルギーの2乗
  265.  
  266. return
  267. END SUBROUTINE Verlet
  268.  
  269.  
  270.  
  271. SUBROUTINE Output(mode, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, H0, V0, &
  272. SumH, SumH2, SumT, SumT2, MaxErrH)
  273. !------------!
  274. ! 結果の出力 !
  275. !------------!
  276. IMPLICIT NONE
  277. INTEGER, INTENT(in) :: mode, PrintInt, NpTot, n, MDStep, NSum
  278. REAL(8), INTENT(in) :: Dt, R(3,NpTot), H, T, P, V(3,NpTot), H0, V0, SumH, SumH2, SumT, SumT2
  279. REAL(8), INTENT(inout) :: MaxErrH
  280. ! Local stuff
  281. REAL(8) time, AveH, AveH2, AveT, AveT2, RMSD_H, RMSD_T
  282.  
  283. if (mode == 0) then
  284. !----- Output data at the current time -----
  285. time = Dt*real(n,8)
  286.  
  287. if ( (n==MDStep) .or. (mod(n,PrintInt)==0) ) &
  288. write(6, '( 5(e14.6), e23.15 )') time, R(1,2), V(1,2), T, P, H
  289.  
  290. MaxErrH= max(MaxErrH, abs(H-H0)) ! Maximum error in Hamiltonian
  291.  
  292.  
  293. elseif (mode == 1) then
  294. !----- Compute root mean square deviation (RMSD) -----
  295. ! compute averages
  296. AveH = SumH /real(NSum,8) ! ハミルトニアン
  297. AveH2 = SumH2/real(NSum,8) ! ハミルトニアンの2乗
  298. AveT = SumT /real(NSum,8) ! 運動エネルギー
  299. AveT2 = SumT2/real(NSum,8) ! 運動エネルギーの2乗
  300.  
  301. ! compute RMSD
  302. RMSD_H = sqrt(abs(AveH2-AveH**2))
  303. RMSD_T = sqrt(abs(AveT2-AveT**2))
  304.  
  305. ! print
  306. write(6, *)
  307. write(6, *) '---------'
  308. write(6, *) ' Summary '
  309. write(6, *) '---------'
  310. write(6, '( a, e23.15 )') 'Dt =', Dt
  311. write(6, '( a, e23.15 )') 'V0 =', V0
  312. write(6, '( a, e23.15 )') 'RMSD(H) =', RMSD_H
  313. write(6, '( a, e23.15 )') 'Max. err.(H) =', MaxErrH
  314. write(6, '( a, e23.15 )') 'Final pos. =', R(1,2)
  315. write(6, '( 2(a, e23.15) )') '<H>=', AveH, ' +- ', RMSD_H
  316. write(6, '( 2(a, e23.15) )') '<T>=', AveT, ' +- ', RMSD_T
  317. write(6, '( a, i10 )') 'Norm. const.(NSum)= ', NSum
  318.  
  319. endif
  320.  
  321. return
  322. END SUBROUTINE Output
  323.  
Success #stdin #stdout 0.01s 5280KB
stdin
Standard input is empty
stdout
 ==============================
 MD simulation by Verlet method
 ==============================
  # of particles    =            2
  L-J parameters:
    --> Epsilon     =    1.0000000000000000     
    --> Sigma       =    1.0000000000000000     
  Mass of particle  =    1.0000000000000000     
  Time step         =    1.0000000000000000E-003
  # of MD steps     =         1000
  Simulation time   =    1.0000000000000000     
  Print interval    =    1.0000000000000000E-002

 #time,  position,  velocity,  kinetic,  potential,  hamiltonian
  0.000000E+00  0.100000E+01 -0.100000E+01  0.100000E+01 -0.615234E-01  0.938476562500000E+00
  0.100000E-01  0.989991E+00 -0.100188E+01  0.100376E+01 -0.652867E-01  0.938476580152593E+00
  0.200000E-01  0.979962E+00 -0.100389E+01  0.100780E+01 -0.693257E-01  0.938476599538445E+00
  0.300000E-01  0.969912E+00 -0.100605E+01  0.101214E+01 -0.736642E-01  0.938476620852774E+00
  0.400000E-01  0.959840E+00 -0.100837E+01  0.101681E+01 -0.783286E-01  0.938476644315569E+00
  0.500000E-01  0.949744E+00 -0.101085E+01  0.102182E+01 -0.833477E-01  0.938476670175001E+00
  0.600000E-01  0.939623E+00 -0.101352E+01  0.102723E+01 -0.887534E-01  0.938476698711342E+00
  0.700000E-01  0.929473E+00 -0.101639E+01  0.103306E+01 -0.945812E-01  0.938476730241397E+00
  0.800000E-01  0.919294E+00 -0.101948E+01  0.103935E+01 -0.100870E+00  0.938476765123551E+00
  0.900000E-01  0.909083E+00 -0.102281E+01  0.104614E+01 -0.107663E+00  0.938476803763436E+00
  0.100000E+00  0.898837E+00 -0.102639E+01  0.105349E+01 -0.115009E+00  0.938476846620279E+00
  0.110000E+00  0.888554E+00 -0.103026E+01  0.106144E+01 -0.122960E+00  0.938476894213913E+00
  0.120000E+00  0.878231E+00 -0.103443E+01  0.107005E+01 -0.131577E+00  0.938476947132383E+00
  0.130000E+00  0.867864E+00 -0.103894E+01  0.107940E+01 -0.140926E+00  0.938477006040004E+00
  0.140000E+00  0.857451E+00 -0.104382E+01  0.108956E+01 -0.151080E+00  0.938477071685541E+00
  0.150000E+00  0.846987E+00 -0.104909E+01  0.110060E+01 -0.162122E+00  0.938477144909928E+00
  0.160000E+00  0.836467E+00 -0.105481E+01  0.111262E+01 -0.174144E+00  0.938477226652561E+00
  0.170000E+00  0.825889E+00 -0.106100E+01  0.112573E+01 -0.187250E+00  0.938477317954515E+00
  0.180000E+00  0.815246E+00 -0.106772E+01  0.114003E+01 -0.201557E+00  0.938477419956029E+00
  0.190000E+00  0.804532E+00 -0.107502E+01  0.115567E+01 -0.217193E+00  0.938477533884022E+00
  0.200000E+00  0.793743E+00 -0.108295E+01  0.117278E+01 -0.234305E+00  0.938477661022836E+00
  0.210000E+00  0.782871E+00 -0.109157E+01  0.119153E+01 -0.253055E+00  0.938477802657397E+00
  0.220000E+00  0.771909E+00 -0.110096E+01  0.121210E+01 -0.273627E+00  0.938477959971667E+00
  0.230000E+00  0.760849E+00 -0.111117E+01  0.123470E+01 -0.296224E+00  0.938478133875102E+00
  0.240000E+00  0.749683E+00 -0.112230E+01  0.125955E+01 -0.321072E+00  0.938478324713642E+00
  0.250000E+00  0.738400E+00 -0.113442E+01  0.128690E+01 -0.348423E+00  0.938478531795696E+00
  0.260000E+00  0.726991E+00 -0.114762E+01  0.131703E+01 -0.378549E+00  0.938478752621436E+00
  0.270000E+00  0.715444E+00 -0.116199E+01  0.135022E+01 -0.411745E+00  0.938478981635383E+00
  0.280000E+00  0.703747E+00 -0.117762E+01  0.138680E+01 -0.448319E+00  0.938479208210840E+00
  0.290000E+00  0.691887E+00 -0.119460E+01  0.142706E+01 -0.488582E+00  0.938479413393706E+00
  0.300000E+00  0.679850E+00 -0.121297E+01  0.147130E+01 -0.532824E+00  0.938479564639271E+00
  0.310000E+00  0.667623E+00 -0.123278E+01  0.151975E+01 -0.581274E+00  0.938479607304858E+00
  0.320000E+00  0.655190E+00 -0.125400E+01  0.157251E+01 -0.634030E+00  0.938479450925236E+00
  0.330000E+00  0.642539E+00 -0.127649E+01  0.162942E+01 -0.690946E+00  0.938478947205788E+00
  0.340000E+00  0.629657E+00 -0.129997E+01  0.168992E+01 -0.751446E+00  0.938477855225126E+00
  0.350000E+00  0.616538E+00 -0.132389E+01  0.175269E+01 -0.814217E+00  0.938475787980573E+00
  0.360000E+00  0.603181E+00 -0.134729E+01  0.181519E+01 -0.876716E+00  0.938472135000240E+00
  0.370000E+00  0.589599E+00 -0.136853E+01  0.187288E+01 -0.934409E+00  0.938465964252360E+00
  0.380000E+00  0.575826E+00 -0.138495E+01  0.191808E+01 -0.979620E+00  0.938455939476947E+00
  0.390000E+00  0.561930E+00 -0.139226E+01  0.193839E+01 -0.999945E+00  0.938440385567198E+00
  0.400000E+00  0.548032E+00 -0.138378E+01  0.191486E+01 -0.976442E+00  0.938417866732863E+00
  0.410000E+00  0.534339E+00 -0.134945E+01  0.182101E+01 -0.882619E+00  0.938389055679836E+00
  0.420000E+00  0.521175E+00 -0.127494E+01  0.162548E+01 -0.687117E+00  0.938360898155693E+00
  0.430000E+00  0.509033E+00 -0.114205E+01  0.130427E+01 -0.365920E+00  0.938352169108035E+00
  0.440000E+00  0.498590E+00 -0.932122E+00  0.868851E+00  0.695405E-01  0.938391488594832E+00
  0.450000E+00  0.490680E+00 -0.635063E+00  0.403305E+00  0.535184E+00  0.938489318277597E+00
  0.460000E+00  0.486142E+00 -0.262291E+00  0.687967E-01  0.869796E+00  0.938593005958441E+00
  0.470000E+00  0.485555E+00  0.146377E+00  0.214261E-01  0.917184E+00  0.938609893439852E+00
  0.480000E+00  0.489001E+00  0.534653E+00  0.285854E+00  0.652668E+00  0.938522600597824E+00
  0.490000E+00  0.496023E+00  0.855840E+00  0.732462E+00  0.205952E+00  0.938414407655330E+00
  0.500000E+00  0.505829E+00  0.109042E+01  0.118902E+01 -0.250660E+00  0.938357324483135E+00
  0.510000E+00  0.517562E+00  0.124366E+01  0.154668E+01 -0.608330E+00  0.938355232371810E+00
  0.520000E+00  0.530491E+00  0.133292E+01  0.177669E+01 -0.838305E+00  0.938380351967159E+00
  0.530000E+00  0.544072E+00  0.137712E+01  0.189647E+01 -0.958061E+00  0.938410107777323E+00
  0.540000E+00  0.557936E+00  0.139181E+01  0.193714E+01 -0.998707E+00  0.938434674083510E+00
  0.550000E+00  0.571848E+00  0.138821E+01  0.192714E+01 -0.988689E+00  0.938452120169706E+00
  0.560000E+00  0.585666E+00  0.137388E+01  0.188756E+01 -0.949094E+00  0.938463552051014E+00
  0.570000E+00  0.599307E+00  0.135370E+01  0.183249E+01 -0.894022E+00  0.938470673132390E+00
  0.580000E+00  0.612730E+00  0.133071E+01  0.177080E+01 -0.832325E+00  0.938474936311302E+00
  0.590000E+00  0.625918E+00  0.130682E+01  0.170778E+01 -0.769302E+00  0.938477383809351E+00
  0.600000E+00  0.638868E+00  0.128314E+01  0.164645E+01 -0.707974E+00  0.938478707820049E+00
  0.610000E+00  0.651584E+00  0.126033E+01  0.158842E+01 -0.649945E+00  0.938479350419478E+00
  0.620000E+00  0.664078E+00  0.123873E+01  0.153445E+01 -0.595966E+00  0.938479587987621E+00
  0.630000E+00  0.676363E+00  0.121851E+01  0.148476E+01 -0.546284E+00  0.938479591128902E+00
  0.640000E+00  0.688453E+00  0.119972E+01  0.143933E+01 -0.500854E+00  0.938479464182497E+00
  0.650000E+00  0.700362E+00  0.118235E+01  0.139796E+01 -0.459477E+00  0.938479270368090E+00
  0.660000E+00  0.712105E+00  0.116634E+01  0.136036E+01 -0.421876E+00  0.938479047514841E+00
  0.670000E+00  0.723693E+00  0.115162E+01  0.132622E+01 -0.387744E+00  0.938478817822866E+00
  0.680000E+00  0.735141E+00  0.113809E+01  0.129525E+01 -0.356768E+00  0.938478593903999E+00
  0.690000E+00  0.746459E+00  0.112567E+01  0.126713E+01 -0.328650E+00  0.938478382518628E+00
  0.700000E+00  0.757658E+00  0.111427E+01  0.124159E+01 -0.303110E+00  0.938478186888470E+00
  0.710000E+00  0.768747E+00  0.110380E+01  0.121837E+01 -0.279892E+00  0.938478008128180E+00
  0.720000E+00  0.779736E+00  0.109418E+01  0.119724E+01 -0.258761E+00  0.938477846130483E+00
  0.730000E+00  0.790633E+00  0.108535E+01  0.117799E+01 -0.239508E+00  0.938477700111476E+00
  0.740000E+00  0.801446E+00  0.107723E+01  0.116042E+01 -0.221943E+00  0.938477568944112E+00
  0.750000E+00  0.812180E+00  0.106976E+01  0.114438E+01 -0.205900E+00  0.938477451359503E+00
  0.760000E+00  0.822843E+00  0.106287E+01  0.112970E+01 -0.191226E+00  0.938477346065759E+00
  0.770000E+00  0.833439E+00  0.105653E+01  0.111626E+01 -0.177788E+00  0.938477251815531E+00
  0.780000E+00  0.843975E+00  0.105069E+01  0.110394E+01 -0.165465E+00  0.938477167441859E+00
  0.790000E+00  0.854455E+00  0.104529E+01  0.109263E+01 -0.154152E+00  0.938477091874628E+00
  0.800000E+00  0.864882E+00  0.104030E+01  0.108223E+01 -0.143752E+00  0.938477024145416E+00
  0.810000E+00  0.875262E+00  0.103569E+01  0.107266E+01 -0.134181E+00  0.938476963385591E+00
  0.820000E+00  0.885597E+00  0.103143E+01  0.106384E+01 -0.125361E+00  0.938476908820699E+00
  0.830000E+00  0.895891E+00  0.102747E+01  0.105570E+01 -0.117225E+00  0.938476859763034E+00
  0.840000E+00  0.906148E+00  0.102381E+01  0.104819E+01 -0.109712E+00  0.938476815603510E+00
  0.850000E+00  0.916369E+00  0.102041E+01  0.104124E+01 -0.102765E+00  0.938476775803530E+00
  0.860000E+00  0.926557E+00  0.101726E+01  0.103481E+01 -0.963361E-01  0.938476739887228E+00
  0.870000E+00  0.936714E+00  0.101433E+01  0.102886E+01 -0.903803E-01  0.938476707434277E+00
  0.880000E+00  0.946844E+00  0.101160E+01  0.102333E+01 -0.848572E-01  0.938476678073351E+00
  0.890000E+00  0.956947E+00  0.100906E+01  0.101821E+01 -0.797306E-01  0.938476651476259E+00
  0.900000E+00  0.967026E+00  0.100670E+01  0.101344E+01 -0.749676E-01  0.938476627352731E+00
  0.910000E+00  0.977082E+00  0.100450E+01  0.100902E+01 -0.705384E-01  0.938476605445807E+00
  0.920000E+00  0.987116E+00  0.100244E+01  0.100489E+01 -0.664160E-01  0.938476585527787E+00
  0.930000E+00  0.997131E+00  0.100053E+01  0.100105E+01 -0.625760E-01  0.938476567396672E+00
  0.940000E+00  0.100713E+01  0.998735E+00  0.997473E+00 -0.589960E-01  0.938476550873046E+00
  0.950000E+00  0.101711E+01  0.997062E+00  0.994132E+00 -0.556557E-01  0.938476535797362E+00
  0.960000E+00  0.102707E+01  0.995496E+00  0.991013E+00 -0.525368E-01  0.938476522027550E+00
  0.970000E+00  0.103702E+01  0.994032E+00  0.988099E+00 -0.496222E-01  0.938476509436954E+00
  0.980000E+00  0.104695E+01  0.992660E+00  0.985373E+00 -0.468966E-01  0.938476497912498E+00
  0.990000E+00  0.105687E+01  0.991374E+00  0.982822E+00 -0.443460E-01  0.938476487353110E+00
  0.100000E+01  0.106678E+01  0.990169E+00  0.980434E+00 -0.419574E-01  0.938476477668326E+00

 ---------
  Summary 
 ---------
Dt           =  0.100000000000000E-02
V0           =  0.100000000000000E+01
RMSD(H)      =  0.355940101430557E-04
Max. err.(H) =  0.141030044792045E-03
Final pos.   =  0.106677734243728E+01
<H>=  0.938469462636826E+00 +-   0.355940101430557E-04
<T>=  0.124058505030811E+01 +-   0.370785120371958E+00
Norm. const.(NSum)=        1001
  Done.