fork download
  1. import numpy as np
  2. from itertools import product # To generate all binary combinations
  3.  
  4. # Initialisierung der Schwellenwerte
  5. lower_threshold = 0.8
  6. upper_threshold = 1.2
  7.  
  8. # Lernrate
  9. learning_rate = 0.1
  10.  
  11. # Trainingsdaten (Inputs für das XOR-Problem und andere)
  12. inputs = [[0, 0], [0, 1], [1, 0], [1, 1]]
  13.  
  14. # Alle möglichen Zieltabellen (16 Kombinationen)
  15. all_possible_targets = list(product([0, 1], repeat=4))
  16.  
  17. # Trainingsloop für jede mögliche Zieltabelle
  18. for table_index, targets in enumerate(all_possible_targets, start=1):
  19. print(f"\n=== Wahrheitstabelle {table_index}: Targets = {targets} ===")
  20.  
  21. # Trainingsloop mit max. 1000 Iterationen
  22. max_iterations = 1000
  23. epoch = 0
  24. network_trained = False
  25. start_weights = None
  26. final_weights = None
  27. all_epoch_outputs = [] # Store outputs of all epochs for debugging and transparency
  28.  
  29. while epoch < max_iterations:
  30. epoch += 1
  31. all_correct = True # Flag, um zu überprüfen, ob alle Ausgaben korrekt sind
  32. current_weights = np.random.rand(2) # Zufällige Startgewichte
  33.  
  34. if epoch == 1: # Die erste Iteration nach Initialisierung
  35. start_weights = current_weights # Speichere die Startgewichte
  36.  
  37. epoch_outputs = [] # To store outputs of this epoch
  38.  
  39. for input_vector, target in zip(inputs, targets):
  40. # Berechnung der gewichteten Summe
  41. weighted_sum = np.dot(input_vector, current_weights)
  42.  
  43. # Aktivierungsfunktion (einfache Schwellenwertfunktion)
  44. output = 1 if lower_threshold < weighted_sum < upper_threshold else 0
  45.  
  46. # Fehlerberechnung
  47. error = target - output
  48.  
  49. # Wenn ein Fehler vorliegt, dann weise die Gewichte an
  50. if error != 0:
  51. all_correct = False
  52. current_weights += learning_rate * error * np.array(input_vector)
  53.  
  54. epoch_outputs.append((input_vector, output, target)) # Save each iteration's output
  55.  
  56. all_epoch_outputs.append(epoch_outputs)
  57.  
  58. # Überprüfe, ob alle Ausgaben korrekt sind
  59. if all_correct:
  60. network_trained = True
  61. final_weights = current_weights # Speichere die finalen Gewichte
  62. break # Stoppe, wenn alle Ausgaben korrekt sind
  63.  
  64. # Wenn Tabelle nach 100 Iterationen nicht gelernt wurde, setze neue zufällige Startgewichte
  65. if epoch % 100 == 0:
  66. print(f"Nicht funktionierende Startgewichte: {start_weights}")
  67. start_weights = np.random.rand(2) # Setze neue Startgewichte
  68.  
  69. if network_trained:
  70. print(f"Das Netzwerk hat Wahrheitstabelle {table_index} korrekt nach {epoch} Iterationen gelernt.")
  71. print(f"Die Working Startgewichte waren: {start_weights}")
  72. print(f"Die finalen Gewichte sind: {final_weights}")
  73. else:
  74. print(f"Das Netzwerk hat Wahrheitstabelle {table_index} nach {epoch} Iterationen nicht korrekt gelernt.")
  75. print("\nFinal Test Output übersprungen, da das Netzwerk nicht gelernt hat.")
  76. continue # Skip final testing if the network didn't learn the truth table
  77.  
  78. # Testen des Netzwerks nach den Lern-Iterationen
  79. print("\nFinal Test Output:")
  80. for input_vector, target in zip(inputs, targets):
  81. weighted_sum = np.dot(input_vector, final_weights)
  82. output = 1 if lower_threshold < weighted_sum < upper_threshold else 0
  83. print(f"Input: {input_vector}, Target: {target}, Output: {output}")
  84.  
  85. # Optionally, print out the outputs of each epoch for transparency
  86. print("\nEpoch Outputs:")
  87. for epoch_index, epoch_outputs in enumerate(all_epoch_outputs):
  88. print(f"Epoch {epoch_index + 1}:")
  89. for input_vector, output, target in epoch_outputs:
  90. print(f" Input: {input_vector}, Output: {output}, Target: {target}")
  91.  
Success #stdin #stdout 0.79s 29460KB
stdin
Standard input is empty
stdout
=== Wahrheitstabelle 1: Targets = (0, 0, 0, 0) ===
Das Netzwerk hat Wahrheitstabelle 1 korrekt nach 1 Iterationen gelernt.
Die Working Startgewichte waren: [0.38773827 0.10279643]
Die finalen Gewichte sind: [0.38773827 0.10279643]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 0, Output: 0
Input: [1, 0], Target: 0, Output: 0
Input: [1, 1], Target: 0, Output: 0

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0

=== Wahrheitstabelle 2: Targets = (0, 0, 0, 1) ===
Das Netzwerk hat Wahrheitstabelle 2 korrekt nach 1 Iterationen gelernt.
Die Working Startgewichte waren: [0.75505487 0.23875388]
Die finalen Gewichte sind: [0.75505487 0.23875388]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 0, Output: 0
Input: [1, 0], Target: 0, Output: 0
Input: [1, 1], Target: 1, Output: 1

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 1

=== Wahrheitstabelle 3: Targets = (0, 0, 1, 0) ===
Das Netzwerk hat Wahrheitstabelle 3 korrekt nach 5 Iterationen gelernt.
Die Working Startgewichte waren: [0.51048581 0.07617452]
Die finalen Gewichte sind: [0.88183548 0.74660211]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 0, Output: 0
Input: [1, 0], Target: 1, Output: 1
Input: [1, 1], Target: 0, Output: 0

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 3:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 4:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 5:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0

=== Wahrheitstabelle 4: Targets = (0, 0, 1, 1) ===
Das Netzwerk hat Wahrheitstabelle 4 korrekt nach 34 Iterationen gelernt.
Die Working Startgewichte waren: [1.07740021 0.86479463]
Die finalen Gewichte sind: [0.99109129 0.10955336]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 0, Output: 0
Input: [1, 0], Target: 1, Output: 1
Input: [1, 1], Target: 1, Output: 1

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 3:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 4:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 5:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 6:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 7:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 8:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 9:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 10:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 11:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 12:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 13:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 14:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 15:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 16:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 17:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 18:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 19:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 20:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 21:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 22:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 23:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 24:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 25:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 26:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 27:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 28:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 29:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 30:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 1
Epoch 31:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 32:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 33:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 1
Epoch 34:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 0
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 1, Target: 1

=== Wahrheitstabelle 5: Targets = (0, 1, 0, 0) ===
Das Netzwerk hat Wahrheitstabelle 5 korrekt nach 3 Iterationen gelernt.
Die Working Startgewichte waren: [0.10152681 0.24830332]
Die finalen Gewichte sind: [0.48749899 0.93966495]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 1, Output: 1
Input: [1, 0], Target: 0, Output: 0
Input: [1, 1], Target: 0, Output: 0

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 1, Target: 0
  Input: [1, 1], Output: 1, Target: 0
Epoch 3:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 0, Target: 0

=== Wahrheitstabelle 6: Targets = (0, 1, 0, 1) ===
Das Netzwerk hat Wahrheitstabelle 6 korrekt nach 2 Iterationen gelernt.
Die Working Startgewichte waren: [0.06407221 0.862664  ]
Die finalen Gewichte sind: [0.23128033 0.89233895]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 1, Output: 1
Input: [1, 0], Target: 0, Output: 0
Input: [1, 1], Target: 1, Output: 1

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 1
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 0
  Input: [1, 1], Output: 1, Target: 1

=== Wahrheitstabelle 7: Targets = (0, 1, 1, 0) ===
Das Netzwerk hat Wahrheitstabelle 7 korrekt nach 12 Iterationen gelernt.
Die Working Startgewichte waren: [0.51264224 0.93428104]
Die finalen Gewichte sind: [0.97493662 0.93096405]

Final Test Output:
Input: [0, 0], Target: 0, Output: 0
Input: [0, 1], Target: 1, Output: 1
Input: [1, 0], Target: 1, Output: 1
Input: [1, 1], Target: 0, Output: 0

Epoch Outputs:
Epoch 1:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 2:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 3:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 4:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 5:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 6:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 7:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 8:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 9:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 10:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 0, Target: 0
Epoch 11:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 0, Target: 1
  Input: [1, 0], Output: 0, Target: 1
  Input: [1, 1], Output: 1, Target: 0
Epoch 12:
  Input: [0, 0], Output: 0, Target: 0
  Input: [0, 1], Output: 1, Target: 1
  Input: [1, 0], Output: 1, Target: 1
  Input: [1, 1], Output: 0, Target: 0

=== Wahrheitstabelle 8: Targets = (0, 1, 1, 1) ===
Nicht funktionierende Startgewichte: [0.98848234 0.64882777]
Nicht funktionierende Startgewichte: [0.3104258  0.73265117]
Nicht funktionierende Startgewichte: [0.13187407 0.78462238]
Nicht funktionierende Startgewichte: [0.03356816 0.63518944]
Nicht funktionierende Startgewichte: [0.94692806 0.78994414]
Nicht funktionierende Startgewichte: [0.11790609 0.85143647]
Nicht funktionierende Startgewichte: [0.06739948 0.35664873]
Nicht funktionierende Startgewichte: [0.16104049 0.25002758]
Nicht funktionierende Startgewichte: [0.19100308 0.9489133 ]
Nicht funktionierende Startgewichte: [0.30138287 0.97383476]
Das Netzwerk hat Wahrheitstabelle 8 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 9: Targets = (1, 0, 0, 0) ===
Nicht funktionierende Startgewichte: [0.87951492 0.4093497 ]
Nicht funktionierende Startgewichte: [0.44023511 0.65086775]
Nicht funktionierende Startgewichte: [0.9686673  0.06497045]
Nicht funktionierende Startgewichte: [0.57251096 0.47692894]
Nicht funktionierende Startgewichte: [0.68335117 0.1011484 ]
Nicht funktionierende Startgewichte: [0.68012294 0.07287977]
Nicht funktionierende Startgewichte: [0.01709427 0.65199311]
Nicht funktionierende Startgewichte: [0.4149376  0.20386562]
Nicht funktionierende Startgewichte: [0.60580681 0.97420822]
Nicht funktionierende Startgewichte: [0.16820164 0.96104177]
Das Netzwerk hat Wahrheitstabelle 9 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 10: Targets = (1, 0, 0, 1) ===
Nicht funktionierende Startgewichte: [0.80709045 0.15463539]
Nicht funktionierende Startgewichte: [0.21810825 0.4192519 ]
Nicht funktionierende Startgewichte: [0.92207141 0.66858942]
Nicht funktionierende Startgewichte: [0.13371935 0.50905793]
Nicht funktionierende Startgewichte: [0.72561085 0.99289279]
Nicht funktionierende Startgewichte: [0.87389264 0.92017935]
Nicht funktionierende Startgewichte: [0.5575816  0.51507492]
Nicht funktionierende Startgewichte: [0.20290548 0.93042401]
Nicht funktionierende Startgewichte: [0.60479189 0.0815959 ]
Nicht funktionierende Startgewichte: [0.31289238 0.79173406]
Das Netzwerk hat Wahrheitstabelle 10 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 11: Targets = (1, 0, 1, 0) ===
Nicht funktionierende Startgewichte: [0.71414818 0.68589416]
Nicht funktionierende Startgewichte: [0.15930946 0.19489759]
Nicht funktionierende Startgewichte: [0.69481493 0.31514119]
Nicht funktionierende Startgewichte: [0.65165506 0.5786979 ]
Nicht funktionierende Startgewichte: [0.58344345 0.52212197]
Nicht funktionierende Startgewichte: [0.24200479 0.85915637]
Nicht funktionierende Startgewichte: [0.14577559 0.05425803]
Nicht funktionierende Startgewichte: [0.00363129 0.11247704]
Nicht funktionierende Startgewichte: [0.40375901 0.06599732]
Nicht funktionierende Startgewichte: [0.55610551 0.43111158]
Das Netzwerk hat Wahrheitstabelle 11 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 12: Targets = (1, 0, 1, 1) ===
Nicht funktionierende Startgewichte: [0.39775101 0.48047398]
Nicht funktionierende Startgewichte: [0.99645888 0.19998983]
Nicht funktionierende Startgewichte: [0.24353631 0.98498377]
Nicht funktionierende Startgewichte: [0.20088422 0.42288884]
Nicht funktionierende Startgewichte: [0.62129332 0.98646244]
Nicht funktionierende Startgewichte: [0.69392985 0.08077665]
Nicht funktionierende Startgewichte: [0.81134423 0.51517592]
Nicht funktionierende Startgewichte: [0.54984322 0.18454394]
Nicht funktionierende Startgewichte: [0.32729865 0.9051019 ]
Nicht funktionierende Startgewichte: [0.03187582 0.5150429 ]
Das Netzwerk hat Wahrheitstabelle 12 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 13: Targets = (1, 1, 0, 0) ===
Nicht funktionierende Startgewichte: [0.47242338 0.82742324]
Nicht funktionierende Startgewichte: [0.03212829 0.14880005]
Nicht funktionierende Startgewichte: [0.07224835 0.21550571]
Nicht funktionierende Startgewichte: [0.18260943 0.54409428]
Nicht funktionierende Startgewichte: [0.52646334 0.45260972]
Nicht funktionierende Startgewichte: [0.04237218 0.43892235]
Nicht funktionierende Startgewichte: [0.51200675 0.17467328]
Nicht funktionierende Startgewichte: [0.88395505 0.55185564]
Nicht funktionierende Startgewichte: [0.0340421  0.17144036]
Nicht funktionierende Startgewichte: [0.22346098 0.45516858]
Das Netzwerk hat Wahrheitstabelle 13 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 14: Targets = (1, 1, 0, 1) ===
Nicht funktionierende Startgewichte: [0.22587166 0.60801149]
Nicht funktionierende Startgewichte: [0.43712019 0.79864434]
Nicht funktionierende Startgewichte: [0.6638768  0.39173726]
Nicht funktionierende Startgewichte: [0.76649336 0.40165569]
Nicht funktionierende Startgewichte: [0.99832893 0.48500192]
Nicht funktionierende Startgewichte: [0.43898492 0.04504618]
Nicht funktionierende Startgewichte: [0.74250923 0.94938417]
Nicht funktionierende Startgewichte: [0.42625681 0.16349822]
Nicht funktionierende Startgewichte: [0.31129607 0.63805399]
Nicht funktionierende Startgewichte: [0.80418409 0.2872413 ]
Das Netzwerk hat Wahrheitstabelle 14 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 15: Targets = (1, 1, 1, 0) ===
Nicht funktionierende Startgewichte: [0.11362044 0.63055993]
Nicht funktionierende Startgewichte: [0.63945797 0.70937432]
Nicht funktionierende Startgewichte: [0.92272302 0.90924851]
Nicht funktionierende Startgewichte: [0.63042411 0.21637552]
Nicht funktionierende Startgewichte: [0.61886216 0.52700159]
Nicht funktionierende Startgewichte: [0.53814475 0.0444355 ]
Nicht funktionierende Startgewichte: [0.64912721 0.18189709]
Nicht funktionierende Startgewichte: [0.03719822 0.94576664]
Nicht funktionierende Startgewichte: [0.15360714 0.78095148]
Nicht funktionierende Startgewichte: [0.40600397 0.31660618]
Das Netzwerk hat Wahrheitstabelle 15 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.

=== Wahrheitstabelle 16: Targets = (1, 1, 1, 1) ===
Nicht funktionierende Startgewichte: [0.78439559 0.65993062]
Nicht funktionierende Startgewichte: [0.44506    0.72518468]
Nicht funktionierende Startgewichte: [0.45978126 0.7954309 ]
Nicht funktionierende Startgewichte: [0.97940222 0.99338334]
Nicht funktionierende Startgewichte: [0.84584151 0.73180686]
Nicht funktionierende Startgewichte: [0.99089567 0.55965903]
Nicht funktionierende Startgewichte: [0.33363897 0.67078637]
Nicht funktionierende Startgewichte: [0.50706353 0.49436478]
Nicht funktionierende Startgewichte: [0.25042326 0.04149112]
Nicht funktionierende Startgewichte: [0.93591202 0.23430902]
Das Netzwerk hat Wahrheitstabelle 16 nach 1000 Iterationen nicht korrekt gelernt.

Final Test Output übersprungen, da das Netzwerk nicht gelernt hat.